CS 425

Auditory MMO Team

3/24/11

Design and Plan Document
for the

Auditory MMO Project
By

Ryan Braun

Michael Jenkins

Matthew Garber

Robert Davis
of

Team DarkDev

PROJ-D3-DarkDev-Spring2011

As of: 24 March 2011
Introduction

This document outlines the design and plan for the auditory massively multiplayer online game project. It outlines the architecture description, the design description, the software process, the people involved, risk management strategies, required resources, and the project schedule.
Architecture Description
Create a Massive Multi-Player Online Gaming Architecture

Client Server Communication-

There are many challenges that present themselves from an architectural standpoint. The first challenge is designing the gaming environment to cover the minimum five cooperating school districts across the county. The challenges here lie in the network communication sector. The initial system design is designed around the SmartFoxServer 2X (SFS2X) Platform. SFS2X gives us out of the box API and Libraries for network communication.
[image: image1.png]Database Server

Hibernate / Toatis / other ORMs

load swf and assets (http) socket connection

Taking a bird’s eye view at the SmartFoxServer 2X platform and briefly discuss each of the components in the stack. Starting at the core of the server we find the network engine (codename BitSwarm) which is the third incarnation of the original socket engine built for SmartFoxServer 1.x. This layer provides unique features to SFS2X that are typically not found in other competitor’s solutions. In essence BitSwarm provides TCP/UDP connectivity, Session management, network security tools, the HRC (High Reliable Connection) system, clustering services, monitoring and more, using an highly scalable non-blocking design.

[image: image2.png]Romote Admin |«

Configuration

Task Scheduler

H
IQII

g

i

>
BitSwarm (network /O) |

[

The next concept that we utilize from SFS2X is its use of Zones and Rooms. Zones and Rooms are what the game script will be based around and allow the client to listen and respond to data that is pertinent to that Room.

SmartFoxServer 2X introduces significant improvements in the way Zones and Rooms can be configured. In particular it established a new simple concept called Room Groups that allows organizing Rooms into logical groups, separated from each other’s. Users will be able to subscribe for events happening in the Groups they are interested in, ignoring all the others.

A major advantage of this approach is that the initial room list sent by the server will be smaller, and the number of events fired to each User is highly reduced, especially in case of high traffic applications.
Initial Room and Zone Layout

[image: image3.emf]SFS2X

Network Server

General

Lobby

School A

School B

School C

School D

School E

Arenas

A

B

C

D

E

Dungeons

A

B

C

D

E

Town

Market A

Market B

Market C

Market D

Market E

SFS2X Zones

SFS2X Rooms

Chat Hosting

Zone Selection

Head to Head

Battles

Battles to

Complete

Quest

Non-Combat Area.

Buy/Sell/Trade Items.

Training and Quest

Selection

A User could initially subscribe to the Lobby group and receive Room updates (such as newly created or removed rooms, user count changes and RoomVariables updates) only for the Rooms under that Group. If the User is interested in playing games he can subscribe to one of the other game Groups, see which games are available and join them. Users can also unsubscribe any Group at any time.
The following list describes a few different possible scenarios:

· User joins the Zone without subscribing to any Room Group: in this case the user will receive an empty room list and won't be updated by the server about any Room event. This is a good setup when you want to let the User interact with your server-side Extension without having to receive unwanted Room updates etc... A typical use case is the User registration form, consulting a user-search functionality or other user-profile related activities where the interaction with other clients is not requested.

· User joins the Zone and subscribe to an initial Room Group: This is probably the most common use case The difference here is that the room list will contain only the Rooms in the selected Group and will filter out all the others. The client will be updated about newly created or removed rooms by default. The developer will also be able to configure other events such as the UserCount update, RoomVariables update etc...

· User joins the Zone and subscribe to multiple Room Groups: Subscribing to multiple Groups allow for a more sophisticated Room filtering. The player will be able to obtain a custom room list composed by the Rooms in the selected Groups. Typically the client will join a Lobby Group, maybe a Chat group with a specific theme and a Game group where he can look for games to play.

Finally Groups can be created at runtime and subscribed/unsubscribed dynamically.

Database Design –
The database is a critical part of our application. We will be using the following table design in the beginning of our implementation. The table design below is based on the storage of the Players (Users) information. As we move forward we plan to add a table hierarchy to represent the items, structures, enemies and monsters found within some “rooms”. The reason for moving to this implementation is to allow for dynamic modification to be made by the end user to these rooms. By designing the system in this manor users will be able to design their own rooms, including structures and enemies.

Initial Player Database Design

[image: image4.emf]Player_Info

PK PlayerID

Username

Password

First_Name

Last_Name

School

City

State

Gender

maxLevel

HUD

Level

Health

Mana

FK1 PlayerID

Player_Items

FK1 PlayerID

ItemID

Items

PK ItemID

Price

LevelRestriction

Description

Transaction_Log

PK TransactionID

FK2 BuyerID

FK1 ItemID

Price

FK3 PlayerID

Game Design Engine
We have chosen to develop our project on the Unity3D Game Engine. Unity allows us to focus on game play by providing an incredibly powerful backend service. This allows us to simply write classes and functions and attach them to “Game Objects”, Unity then handles all hookups automatically. Unity also allows us flexibility with 3D Sound which is a large portion of our character control system.
Design Description
· See attached UML diagrams

Software Process
Our software process has been modified from a pure spiral process to include elements of the agile process model, specifically scrum development.
For this software process, three roles are defined: a product owner, who represents the customer; a ScrumMaster, who keeps the team focused, enforcing the scrum process rules; and a team, which is responsible for delivering the product. The product owner role has been assigned to Ryan Braun, the ScrumMaster role has been assigned to Michael Jenkins, and the team role consists of both Robert Davis and Matthew Garber.

We have followed our process model closely and through the use of the spiral model in developing an auditory massively multiplayer online game our process model and team member roles have evolved.
Platform availability

The platform we want to use to develop this project is the Unity game engine. Currently, it is unclear whether or not professional developer licenses will be provided to us free of charge. If we are unable to obtain the licenses we will seek partnerships to cover the cost.

Java bridge implementation
The Java Bridge is a component that will allow us to use the HOP Programming Language Tools and other Java Classes functionality inside of our application. One of the main requirements is that the game must be modifiable through the HOP Language. We currently have two distinct designs for the implementing this bridge. We will choose an implementation by April 18th, 2011. We will make our decision based on prototyping that is currently underway with both systems.
Design 1:

[image: image5.emf]HOP –Unity Bridge Application

(Running in Background of Local Machine)

Game Application

+Connect()

+Disconnect()

+ProcessEvents()

+Send()

Bridge

+Start()

+ProcessEvent()

+SendResponse()

+ReStart()

+Stop()

Bridge

Tag Encoded Messages Passed between Application

Game Application Side:

Bridge Class

Connect() – This function attempts to establish a connection to the HOP-Unity Bridge Application running locally.

Disconnect() – This function terminates the connection to the HOP Bridge Application.

ProcessEvent() – This function will process all messages received from the HOP Bridge. Each Message will be decoded as {String Message=”tag” + “Text”) whereas the tag determine how to process the Message and the Text is the Code, Command, or other information that will then be processed.

Send(string message) – This is the function that we will call to pass the message to the Bridge.

HOP-Unity Bridge Application:

Bridge Class

Start() – This function tells the application to begin listening for and processing messages.

ProcessEvent()-This function will process all messages received from the Game Bridge. Each Message will be decoded as {String Message=”tag” + “Text”) whereas the tag determine how to process the Message and the Text is the Code, Command, or other information that will then be processed.

An example of this would be Message = “HOP {Some Java Code}” . This would be the message that we would send to the HOP Bridge to process a piece of Java Code in HOP.

SendResponse(string message)-This function will pass a tag encoded message in Response to the ProcessEvent() function. In other words it will pass information back to the Game that resulting from processing the message that we just sent to the Bridge. This information could be text to display, commands to modify items in the database, etc.
Restart() – function Restarts the Bridge Application

Stop() - function Stops the Bridge Application

Design 2:

This design is based from a built in set of runtime classes in Unity. The idea is to use the “AndroidJNI”. This class structure was built inside of Unity to be able to use Java for Android application development, but Unity says that it can be used with any Java Code. We think this would be a better approach based on the amount of system resources that will be required to run both applications in Design 1. Also with this implementation there is actual not a “bridge” we are simply able to apply Java code to our project using the JNI functionality.
Design 2 Class Structure:

AndroidJNI

'Raw' JNI interface to Android Dalvik (Java) VM from Mono (CS/JS)

Class Functions

	AttachCurrentThread
	Attaches the current thread to a Java (Dalvik) VM.

	DetachCurrentThread
	Detaches the current thread from a Java (Dalvik) VM.

	GetVersion
	Returns the version of the native method interface.

	FindClass
	This function loads a locally-defined class.

	FromReflectedMethod
	Converts a java.lang.reflect.Method or java.lang.reflect.Constructor object to a method ID.

	FromReflectedField
	Converts a java.lang.reflect.Field to a field ID.

	ToReflectedMethod
	Converts a method ID derived from clazz to a java.lang.reflect.Method or java.lang.reflect.Constructor object.

	ToReflectedField
	Converts a field ID derived from cls to a java.lang.reflect.Field object.

	GetSuperclass
	If clazz represents any class other than the class Object, then this function returns the object that represents the superclass of the class specified by clazz.

	IsAssignableFrom
	Determines whether an object of clazz1 can be safely cast to clazz2.

	Throw
	Causes a java.lang.Throwable object to be thrown.

	ThrowNew
	Constructs an exception object from the specified class with the message specified by message and causes that exception to be thrown.

	ExceptionOccurred
	Determines if an exception is being thrown

	ExceptionDescribe
	Prints an exception and a backtrace of the stack to the logcat

	ExceptionClear
	Clears any exception that is currently being thrown.

	FatalError
	Raises a fatal error and does not expect the VM to recover. This function does not return.

	PushLocalFrame
	Creates a new local reference frame, in which at least a given number of local references can be created.

	PopLocalFrame
	Pops off the current local reference frame, frees all the local references, and returns a local reference in the previous local reference frame for the given result object.

	NewGlobalRef
	Creates a new global reference to the object referred to by the obj argument.

	DeleteGlobalRef
	Deletes the global reference pointed to by obj.

	NewLocalRef
	Creates a new local reference that refers to the same object as obj.

	DeleteLocalRef
	Deletes the local reference pointed to by obj.

	IsSameObject
	Tests whether two references refer to the same Java object.

	EnsureLocalCapacity
	Ensures that at least a given number of local references can be created in the current thread.

	AllocObject
	Allocates a new Java object without invoking any of the constructors for the object.

	NewObject
	Constructs a new Java object. The method ID indicates which constructor method to invoke. This ID must be obtained by calling GetMethodID() with as the method name and void (V) as the return type.

	GetObjectClass
	Returns the class of an object.

	IsInstanceOf
	Tests whether an object is an instance of a class.

	GetMethodID
	Returns the method ID for an instance (nonstatic) method of a class or interface.

	GetFieldID
	Returns the field ID for an instance (nonstatic) field of a class.

	GetStaticMethodID
	Returns the method ID for a static method of a class.

	GetStaticFieldID
	Returns the field ID for a static field of a class.

	NewStringUTF
	Constructs a new java.lang.String object from an array of characters in modified UTF-8 encoding.

	GetStringUTFLength
	Returns the length in bytes of the modified UTF-8 representation of a string.

	GetStringUTFChars
	Returns a managed string object representing the string in modified UTF-8 encoding.

	CallStringMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallObjectMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallIntMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallBooleanMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallShortMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallByteMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallCharMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallFloatMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallDoubleMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallLongMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	CallVoidMethod
	Calls an instance (nonstatic) Java method defined by methodID, optionally passing an array of arguments (args) to the method.

	GetStringField
	This function returns the value of an instance (nonstatic) field of an object.

	GetObjectField
	This function returns the value of an instance (nonstatic) field of an object.

	GetBooleanField
	This function returns the value of an instance (nonstatic) field of an object.

	GetByteField
	This function returns the value of an instance (nonstatic) field of an object.

	GetCharField
	This function returns the value of an instance (nonstatic) field of an object.

	GetShortField
	This function returns the value of an instance (nonstatic) field of an object.

	GetIntField
	This function returns the value of an instance (nonstatic) field of an object.

	GetLongField
	This function returns the value of an instance (nonstatic) field of an object.

	GetFloatField
	This function returns the value of an instance (nonstatic) field of an object.

	GetDoubleField
	This function returns the value of an instance (nonstatic) field of an object.

	SetStringField
	This function sets the value of an instance (nonstatic) field of an object.

	SetObjectField
	This function sets the value of an instance (nonstatic) field of an object.

	SetBooleanField
	This function sets the value of an instance (nonstatic) field of an object.

	SetByteField
	This function sets the value of an instance (nonstatic) field of an object.

	SetCharField
	This function sets the value of an instance (nonstatic) field of an object.

	SetShortField
	This function sets the value of an instance (nonstatic) field of an object.

	SetIntField
	This function sets the value of an instance (nonstatic) field of an object.

	SetLongField
	This function sets the value of an instance (nonstatic) field of an object.

	SetFloatField
	This function sets the value of an instance (nonstatic) field of an object.

	SetDoubleField
	This function sets the value of an instance (nonstatic) field of an object.

	CallStaticStringMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticObjectMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticIntMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticBooleanMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticShortMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticByteMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticCharMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticFloatMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticDoubleMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticLongMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	CallStaticVoidMethod
	Invokes a static method on a Java object, according to the specified methodID, optionally passing an array of arguments (args) to the method.

	GetStaticStringField
	This function returns the value of a static field of an object.

	GetStaticObjectField
	This function returns the value of a static field of an object.

	GetStaticBooleanField
	This function returns the value of a static field of an object.

	GetStaticByteField
	This function returns the value of a static field of an object.

	GetStaticCharField
	This function returns the value of a static field of an object.

	GetStaticShortField
	This function returns the value of a static field of an object.

	GetStaticIntField
	This function returns the value of a static field of an object.

	GetStaticLongField
	This function returns the value of a static field of an object.

	GetStaticFloatField
	This function returns the value of a static field of an object.

	GetStaticDoubleField
	This function returns the value of a static field of an object.

	SetStaticStringField
	This function ets the value of a static field of an object.

	SetStaticObjectField
	This function ets the value of a static field of an object.

	SetStaticBooleanField
	This function ets the value of a static field of an object.

	SetStaticByteField
	This function ets the value of a static field of an object.

	SetStaticCharField
	This function ets the value of a static field of an object.

	SetStaticShortField
	This function ets the value of a static field of an object.

	SetStaticIntField
	This function ets the value of a static field of an object.

	SetStaticLongField
	This function ets the value of a static field of an object.

	SetStaticFloatField
	This function ets the value of a static field of an object.

	SetStaticDoubleField
	This function ets the value of a static field of an object.

	ToBooleanArray
	Convert a managed array of System.Boolean to a Java array of boolean.

	ToByteArray
	Convert a managed array of System.Byte to a Java array of byte.

	ToCharArray
	Convert a managed array of System.Char to a Java array of char.

	ToShortArray
	Convert a managed array of System.Int16 to a Java array of short.

	ToIntArray
	Convert a managed array of System.Int32 to a Java array of int.

	ToLongArray
	Convert a managed array of System.Int64 to a Java array of long.

	ToFloatArray
	Convert a managed array of System.Single to a Java array of float.

	ToDoubleArray
	Convert a managed array of System.Double to a Java array of double.

	ToObjectArray
	Convert a managed array of System.IntPtr, representing Java objects, to a Java array of java.lang.Object.

	FromBooleanArray
	Convert a Java array of boolean to a managed array of System.Boolean.

	FromByteArray
	Convert a Java array of byte to a managed array of System.Byte.

	FromCharArray
	Convert a Java array of char to a managed array of System.Char.

	FromShortArray
	Convert a Java array of short to a managed array of System.Int16.

	FromIntArray
	Convert a Java array of int to a managed array of System.Int32.

	FromLongArray
	Convert a Java array of long to a managed array of System.Int64.

	FromFloatArray
	Convert a Java array of float to a managed array of System.Single.

	FromDoubleArray
	Convert a Java array of double to a managed array of System.Double.

	FromObjectArray
	Convert a Java array of java.lang.Object to a managed array of System.IntPtr, representing Java objects.

	GetArrayLength
	Returns the number of elements in the array.

	NewBooleanArray
	Construct a new primitive array object.

	NewByteArray
	Construct a new primitive array object.

	NewCharArray
	Construct a new primitive array object.

	NewShortArray
	Construct a new primitive array object.

	NewIntArray
	Construct a new primitive array object.

	NewLongArray
	Construct a new primitive array object.

	NewFloatArray
	Construct a new primitive array object.

	NewDoubleArray
	Construct a new primitive array object.

	NewObjectArray
	Constructs a new array holding objects in class clazz. All elements are initially set to obj.

	GetBooleanArrayElement
	Returns the value of one element of a primitive array.

	GetByteArrayElement
	Returns the value of one element of a primitive array.

	GetCharArrayElement
	Returns the value of one element of a primitive array.

	GetShortArrayElement
	Returns the value of one element of a primitive array.

	GetIntArrayElement
	Returns the value of one element of a primitive array.

	GetLongArrayElement
	Returns the value of one element of a primitive array.

	GetFloatArrayElement
	Returns the value of one element of a primitive array.

	GetDoubleArrayElement
	Returns the value of one element of a primitive array.

	GetObjectArrayElement
	Returns an element of an Object array.

	SetBooleanArrayElement
	Sets the value of one element in a primitive array.

	SetByteArrayElement
	Sets the value of one element in a primitive array.

	SetCharArrayElement
	Sets the value of one element in a primitive array.

	SetShortArrayElement
	Sets the value of one element in a primitive array.

	SetIntArrayElement
	Sets the value of one element in a primitive array.

	SetLongArrayElement
	Sets the value of one element in a primitive array.

	SetFloatArrayElement
	Sets the value of one element in a primitive array.

	SetDoubleArrayElement
	Sets the value of one element in a primitive array.

	SetObjectArrayElement
	Sets an element of an Object array.

AndroidJNIHelper
Helper interface for JNI interaction; signature creation and method lookups

Class Variables

	debug
	Set debug to true to log calls through the AndroidJNIHelper

Class Functions

	GetConstructorID
	Scans a particular Java class for a constructor method matching a signature.

	GetMethodID
	Scans a particular Java class for a method matching a name and a signature.

	GetFieldID
	Scans a particular Java class for a field matching a name and a signature.

	ConvertToJNIArray
	Creates a Java array from a managed array

	CreateJNIArgArray
	Creates the parameter array to be used as argument list when invoking Java code through CallMethod() in AndroidJNI.

	GetConstructorID
	Get a JNI method ID for a constructor based on calling arguments.

	GetMethodID
	Get a JNI method ID based on calling arguments.

	GetSignature
	Creates the JNI signature string for particular object type

	ConvertFromJNIArray.<ArrayType>
	Creates a managed array from a Java array

	GetMethodID.<ReturnType>
	Get a JNI method ID based on calling arguments.

	GetFieldID.<FieldType>
	Get a JNI field ID based on type detection. Generic parameter represents the field type.

	GetSignature.<ReturnType>
	Creates the JNI signature string for an object parameter list.

AndroidJavaClass
Inherits from AndroidJavaObject
AndroidJavaClass is the Unity representation of a generic instance of java.lang.Class

Constructors

	AndroidJavaClass
	Construct an AndroidJavaClass from the class name

Inherited members

Inherited Constructors

	AndroidJavaObject
	Construct an AndroidJavaObject based on the name of the class.

Inherited Functions

	Dispose
	IDisposable callback

	Call
	Calls a Java method on an object (non-static).

	CallStatic
	Call a static Java method on a class.

	Get.<FieldType>
	Get the value of a field in an object (non-static).

	Set.<FieldType>
	Set the value of a field in an object (non-static).

	GetStatic.<FieldType>
	Get the value of a static field in an object type.

	SetStatic.<FieldType>
	Set the value of a static field in an object type.

	GetRawObject
	Retrieve the raw jobject pointer to the Java object.

	GetRawClass
	Retrieve the raw jclass pointer to the Java class;

	Call.<ReturnType>
	Call a Java method on an object.

	CallStatic.<ReturnType>
	Call a static Java method on a class.

AndroidJavaObject
Inherits from IDisposable
AndroidJavaObject is the Unity representation of a generic instance of java.lang.Object.

It can be used as type-less interface to an instance of any Java class.

Constructors

	AndroidJavaObject
	Construct an AndroidJavaObject based on the name of the class.

Functions

	Dispose
	IDisposable callback

	Call
	Calls a Java method on an object (non-static).

	CallStatic
	Call a static Java method on a class.

	Get.<FieldType>
	Get the value of a field in an object (non-static).

	Set.<FieldType>
	Set the value of a field in an object (non-static).

	GetStatic.<FieldType>
	Get the value of a static field in an object type.

	SetStatic.<FieldType>
	Set the value of a static field in an object type.

	GetRawObject
	Retrieve the raw jobject pointer to the Java object.

	GetRawClass
	Retrieve the raw jclass pointer to the Java class;

	Call.<ReturnType>
	Call a Java method on an object.

	CallStatic.<ReturnType>
	Call a static Jav

Dungeon generation from Hop code
Our game will allow users to create dungeons from hop source code. One of the key difficulties involved in this is how Unity will interrupt Hop code input. If we cannot establish a direct connection between Unity and Sodbeans we will have the Hop source code converted to specialized file format that will be read into the game engine through C#.
Voice chat implementation
The voice-chat functionality suffers from two possible risks. One of the risks it faces is latency issues when applied on a server with two hundred fifty concurrent users. To solve this problem we will look at a third-party voice-chat host to handle the traffic or add hardware to our infrastructure. The second risk faced by voice-chat implementation is the censoring of vulgar material. We plan to implement a report system where users are allowed to notify administrators of inappropriate activity.
Risk and Resources

For our project, we have identified several possible obstacles. The first and main risk is the availability of the Unity3D Game Engine licensing. Without this software licensing we will have to change Game Engine Platforms and will lose all coding and prototyping that has been completed to this time. We also have identified the Java Bridge as an inherent risk. One of the main requirements is that we must interface with HOP, which is Java based. We are working to overcome this risk. We are also requiring our client to provide the following server side and development resources.

Software Licensing for each of the following:

SmartFoxServer 2X

Unity3D Pro

Hardware

Networked Server running Smartfox Server and SQL Server. This should be a hosted server with good quality hardware. It is unclear the exact specification needed for the server, but for the number of clients specified one relatively powerful hosted server. Also should consider a hosting service that has the ability to cluster as the Smartfox Server will allow clustering to increase capacity as the application grows in size.
Our client side application is designed to run in the Windows Environment, but by developing in Unity3D our application may be expanded to run on Windows, Mac, Web, and possibly mobile devices.

Schedule

[image: image6.emf]ID Task Name Start Finish Duration

Jul 2011 Nov 2011 Aug 2011 Apr 2011

7/24 6/19 7/17 10/30 6/12 3/27 4/17 8/14 5/29 4/3 12/4 11/6 9/11 5/8 6/5 10/2 7/10

Ryan

Braun

Team

Michael

Jenkins

Matthew

Garber

Robert

Davis

Dec 2011 Jun 2011 May 2011 Oct 2011 Sep 2011

8/28 9/4 8/7 5/22 6/26 5/15 10/9 4/10 11/13 4/24 10/23 9/18 11/20 7/3 8/21 10/16 7/31 9/25 11/27 5/1

2 2d 3/29/2011 3/28/2011

Design and Usability

Presentation slides

3 1d 3/29/2011 3/29/2011

Design and Usability

Presentation rehearsal

3d 3/26/2011 3/24/2011 Design and Plan Document

4 7d 4/7/2011 4/1/2011 Final Presentation slides

3d 4/9/2011 4/7/2011 Final Presentation rehearsal

8 4d 4/11/2011 4/8/2011 Post-Mortem Report

15 21d 6/7/2011 5/18/2011 Voice acting

9

1

5d 4/7/2011 4/3/2011 Java bridge implementation 5

10d 4/12/2011 4/3/2011 Dungeon generation 7

6 6d 4/8/2011 4/3/2011 Town construction

3d 4/12/2011 4/10/2011 Text-to-speech 10

14 21d 6/7/2011 5/18/2011 3D modeling

5d 4/17/2011 4/13/2011 Attack/spell creation 11

12 10d 4/24/2011 4/15/2011 Script development

13 3d 4/30/2011 4/28/2011 Voice-chat

16 60d 8/6/2011 6/8/2011 Refactor

Peer Review

[image: image7.png]9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5

Hours For D3: Design and Plan Document 3/28

I I I .Hours
. I . . ,

Ryan Braun Michael Jenkins Matthew Garber Robert Davis

[image: image8.emf]0

1

2

3

4

5

6

Ryan Braun Michael Jenkins Mathew Garber Robert Davis

Commits for D3: Design and Plan Document

3/28

Commits

[image: image9.emf]0

20

40

60

80

100

120

Ryan Braun Michael Jenkins Mathew Garber Robert Davis

Total hours in project

Hours

Individual Efforts
Michael
Open House - 5.75 hours

Document – 4 hours

Ryan

Unity Research - 6 hours

Group Meeting - 9.5 hours

Project Proposal - .25 hours

Scripting - 2.25 hours

Open House - 5.75 hours

Website - .5 hours

UML - .25 hours

Matthew
Group meeting - 9.5 hours
Survey Result - 1 hr
Open House - 5.75 hr
Unity Research - 1 hr
total: 17.25 hr
current doc time - 5.5 hr

Robert
Current Document 9 hours

Network UML Classes

Database Design

Architecture Description

Group Meetings 7 hours

Prototype Development 12 hours

_1362826745.vsd
Text�

HOP – Unity Bridge Application
(Running in Background of Local Machine)

Tag Encoded Messages Passed between Application

Game Application

�

+Connect()
+Disconnect()
+ProcessEvents()
+Send()

Bridge

+Start()
+ProcessEvent()
+SendResponse()
+ReStart()
+Stop()

Bridge

_1362831173.vsd
Tasks

￼

￼

￼

1

￼

￼

￼

Title

ID

Task Name

Start

Finish

Duration

_1362831741.xls
Chart1

		Ryan Braun

		Michael Jenkins

		Mathew Garber

		Robert Davis

Hours

Total hours in project

80.5

72.25

63

101.5

Sheet1

				Hours		Hours(1)		Hours(2)		Hours(3)		Hours(4)		Hours(5)		Hours(6)

		Ryan Braun		80.5		9		8.5		14.75		24		24.25

		Michael Jenkins		72.25		7		9		16.5		30		9.75

		Mathew Garber		63		6		6.5		13.25		20		17.25

		Robert Davis		101.5		6		10		27.5		30		28

				317.25

_1362831742.xls
Chart1

		Ryan Braun

		Michael Jenkins

		Mathew Garber

		Robert Davis

Commits

Commits for D3: Design and Plan Document 3/28

5

4

4

5

Sheet1

				Commits

		Ryan Braun		5

		Michael Jenkins		4

		Mathew Garber		4

		Robert Davis		5

				To resize chart data range, drag lower right corner of range.

_1362831688.xls
Chart1

		Ryan Braun

		Michael Jenkins

		Matthew Garber

		Robert Davis

Hours

Hours For D3: Design and Plan Document 3/28

7

4

5.5

9

Sheet1

				Hours

		Ryan Braun		7

		Michael Jenkins		4

		Matthew Garber		5.5

		Robert Davis		9

_1362830696.vsd
�

Text�

Text�

SFS2X
Network Server

General
Lobby

Dungeons

A

School A

School B

School C

School D

School E

B

C

D

Arenas

A

B

C

D

E

E

Town

Market A

Market B

SFS2X Zones�

SFS2X Rooms�

Market C

Market D

Market E

Chat Hosting
Zone Selection�

Head to Head Battles�

Battles to Complete Quest�

Non-Combat Area.
Buy/Sell/Trade Items.
Training and Quest Selection�

_1362775582.vsd
Table

�

�

Table�

�

